Short communication

Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

Armando González Sánchez a,*, Trinidad Eliseo Flores Márquez b, Sergio Revah c, Juan Manuel Morgan Sagastume a,b

a Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
b IBT Consultores e Ingeniería SA de CV (IBTECH), México City, Mexico
c Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Cuajimalpa, México City, Mexico

Article info

Article history:
Received 7 December 2013
Received in revised form 1 April 2014
Accepted 4 April 2014
Available online 26 April 2014

Keywords:
Sulfide-oxidizing biomass
Biogas
Hydrogen sulfide
Wastewater treatment plant
Desulfurization
Oxygen uptake rate

Abstract

Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H₂S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process.

1. Introduction

Gaseous fuels, including those generated from non-fossil sources such as biogas, commonly contain significant concentrations of hydrogen sulfide (H₂S). Besides the corrosion effects caused on the pipes and in the combustion equipment, significant environmental damage is caused by the acid rain produced by the emitted SO₂. Thus, reliable economic desulfurization processes with minimum impact to the environment are needed. Physicochemical methods complemented with biological treatments have shown to satisfy these requirements, especially for biogas desulfurization [1–5].